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ABSTRACT

The Mode-I fracture toughness of a brittle material reinforced by aligned brittle fibers is studied

theoretically. The fibers are assumed to slip relative to the matrix when a critical interface shear stress is reacted,
As: .' and the toughening action of the fibers is presumed to be due to bridging of crack faces in the vicinity of the crack

front. The toughening due to the fiber reinforcement is related to basic parameters associated with the related

problem of steady-state matrix cracking in the presence of intact fibers. Bridge lengths at fracture and fracture

resistance curves are calculated. " ' ,-, * \'- '.1-I

NOMENCLATURE

a fiber radius

c fiber volume fraction

E longitudinal composite Young's modulus, = cEf + (1-c)Em

Ef, Em fiber, matrix Young's moduli

Gf, Gm fiber, matrix shear moduli

Gm critical matrix energy-release-rate, = (1-V2 m)K 2 m/Em

K applied stress-intensity factor

Km critical matrix stress-intensity factor

L bridge length

Q complementary energy, spring model

S fiber breaking stress

V strain energy, spring model

v crack-face displacement
(X non-dimensional bridge length, Eq. (26)

A modified toughening ratio, Eq. (19)

* On leave from the Department of Mathematics, University of Nigeria, Nsukka, Nigeria.
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. toughening ratio, K/Km

vf, Vm fiber, matrix Poisson's ratio

(0, al reference stresses, Eqs. (1-2)

Ocr critical stress, steady-state matrix cracking

fiber-matrix interface shear resistance

INTRODUCTION

'his paper addresses the problem of calculating the increase in the Mode I, plane-strain

fracture toughness of a brittle material when it is reinforced by long, aligned, brittle fibers, with

-.. sliding between the fibers and the matrix suppressed only if the interface frictional shear is less

than somne limiting streas. The configuration contemplated (Fig. 1) is an infinite domain containing

a semi-infinite crack that is bridged by intact fibers in the vicinity of the crack tip. The crack is
growing in a quasi-static, steady-state fashion, with simultaneous fracture of the matrix along the

crack front and failure of the fibers at the end of the bridged zone. This crack propagation is
imagined to occur under the imposition of a remote stress field that corresponds to an "applied"

stress concentration factor K, which is accordingly defined as the fracture toughness of the

composite material. The primary aim of the present study is to provide theoretical results for the
% *mghening ratio ,=-K/Kmn, where Km is the fracture toughness of the unreinforced matrix material.
In addition, resistance curves will be produced, showing how an initially unbridged crack grows

into the matrix material as the applied K is increased towards its critical value.

The present results should be applicable to less idealized geometries if the conditions of

small-scale bridging are met, wherein the bridge length L is small relative to all other pertinent

dimensions, such as crack length and distance of the crack tip from the boundary. Work on the

* toughening problem by MARSHALL and EVANS (1986) and MARSHALL and Cox (1987)

considered configurations for which the small-scale assumption was not made. Besides its

emphasis on small-scale bridging, the present paper differs from these studies primarily in the way

the analysis and results are linked closely to basic parameters associated with steady-state matrix

cracking without fiber failure (BUDIANSKY, HUTCHINSON, and EVANS, 1986). The importance

of a statistical variation in fiber strength have recently been emphasized by THOULESS and EvANs

(1988), and the influence of residual stresses has been discussed by MARSHALL and EVANS

(1988), but these effects are not considered in the present paper, which is based upon the

preliminary analysis that was outlined by BUDIANSKY (1986).

N ' 6
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STEADY-STATE MATRIX CRACKING

We review here results found by BUDIANSKY, HUTCHINSON, and EVANS (BHE) for the

stress ocr associated with steady matrix cracking (Fig. 2). In the absence of initial stresses, Ocr is

given in Fig. 3 in terms of the reference stresses ao and al defined by

[T/ B 6 2 1f1/4 L--/

7' (1-c)B 2 E(1+v m)]LaEMl1

and

r6E/ [" Gm 1/3
~E=L (1c)EE J L J (2)

where

[2(1.c) 3 ]1/4
B = E-6 log c-3(1-c)(3-c)1 1/4

(3)

The ratio al/c0 plays a key role as a non-dimensional parameter that characterizes the frictional

shear strength of the fiber-matrix interface. For t -- 0, aj/o0 - 0, and then ccr -- GI; thus, 01 is

the critical stress for matrix cracking when there is extensive interface slip between the matrix and

the bridging fibers. On the other hand, for al/Go > 31/3 there is no interface slip during steady-

state matrix cracking, and in this case Ocr = 0 .

For 01/GO < 31/3, the curve in Fig. 3 was described parametrically in BHE by

"(cr _ _ _ 3 01 ( 27 1

"0"0 "3",O ' 0 Y3 +3Y -1 (4)

for I < Y < o. This provides the implicit equation

r" cr 1 '"'" 01 } 3 or,}\yo} -27.00 = I

I 3a2((5) For
* for 0 cr.

if the fibers remain intact after the matrix is fully cracked, the composite may continue to

*.. resist additional stress, as shown schematically by the idealized stress-strain relation in Fig. 4. The :,

:. ultimate composite strength is then approximately Gmax= cS, where S is the breaking stress of the

V fibers. ol

"or.ic' i ,md/or
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ON SPRING MODEL; EQUIVALENT NONLINEAR SPRING STIFFNESS

The steady-state matrix cracking problem of Fig. 2 may be modeled by the configuration

shown in Fig. 5a, wherein crack-bridging springs of zero initial length are imagined to emerge
continuously from the crack tip as the crack grows. The stress Y in the springs will be assumed to

depend on the the crack opening 8=2v (Fig. 6) in such a way as to make the matrix cracking stress

of the model the same as that of the fibrous composite. In establishing this equivalence, the crack-
tip energy-release-rate Gm in the model problem will be modified by the factor (I-c) in order to

simulate the reduction in crack area associated with the presence of fibers. Once the appropriate

* spring characteristics are thereby deduced from the BHE results for steady-state matrix cracking,
we will be able to use the spring model to study the toughening problem (Fig. 1).

By setting the modified crack-tip energy-release-rate equal to the difference between the far

upstream and downstream potential energies per unit length, we get the condition

SCr(acr) - ad 6 = (1-c)Gm
.0 (6)

governing the critical matrix-cracking stress of the model problem. Alternatively, we can write the

J-integral (RICE. 1Q68)

cycoaup

-= oId aenx - ap-ax an(ds=)

Saround the path shown in Fig. 5b to get the same result, if, again, we multiply the contribution

from the small circle around the crack tip by the factor (1-c). Eq. (6) is equivalent to

Q(acr)
(1c)Gm 1(8)

where (see Fig. 6) Q is the complementary energy function

, Q() =f8do.

Note, for future reference, that the strain energy

* V(6) =jd8

-- ::. - F0;
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is related to Q(a) by

V(CY) = oQ'(a) - Q(a). (11)

We now demand that the cracking criterion (8) give the BHE results for acr. In the slipping-fiber

case, we equate the left-hand sides of (5) and (8) to get

Q(Ocr) _ + (acr l a 4 1 27a 6

(1-c)Gm. cr 3k a, Aao) 7  }(2

In the no-slip case, the cracking criterion may be written as (crcr/GFO) 2  1, and comparison of this

with (8) gives

_ _Q(r) (cr ) 2

(1 -c)G n CFO (13)

* (The validity of these identifications is corroborated by the fact that the right-hand sides of both
(12) and (13) are indeed proportional to i/Gm.) We can now write a general formula for Q(a) by

noting that the no-slip condition for fibers (Eq. (27) of BHE) may be expressed as

ga l
co 3a oo (14)

in terms of the smeared-out fiber stresses a at the crack face. Accordingly, the complementary

energy function for the springs is

2' 3

(1-c)Gm for a < 1,, 0 - ,0 (1Sa)

S1)3 1 C, 4 1 6' _6 3

+.-I- 2I0 (1- cl)G forLCaJ 3a cr (T) 27 \._ CFO a ~a}1b

. From (11), the strain energy function is

V() = (-c)G m  for a <
00(YO GO(I16a)

2""! = 2(1-c)Gm for >
a " 27 'i (I 6b)

,,."0,.



* 6

(This last equation for V corrects errors in Eq. (28) of BUDIANSKY (1986)). Finally, the stress-
displacement relation for the springs is given by v = 8/2 = Q'(o)/2, whence

3
. v = (1--clG. for -00 < :5 0

C O (1 7a)

(1-c)Gm for 0 (17b)2(3 6co 3co(I17b)

FRACTURE TOUGHNESS

We now contemplate the configuration in Fig. 1, and model it with that shown in Fig. 7a,
wherein the semi-infinite crack is partially bridged by springs possessing the properties that we

* have just established. Far from the crack tip the material is regarded as homogeneous but

orthotropic, and subjected to the far-field stress state

KOap = fap(O) (17)

where fap(O) = 1, and the angular distribution function fax3(0) = fao(-O) is appropriate for the

particular orthotropy of the composite. Thus K is an "applied" Mode-I stress-intensity factor,
while the stress-intensity factor along the crack edge in the matrix material is assumed equal to Km.
Now write the modified J-integral around the path in Fig. 7b to get

2 22 I_

AE Em(1-c)(-2 (18

*" where the constant A takes into account the orthotropy of the composite, and, as before, the (1-c)

factor reflects the fact that fibers interrupt the crack front. Note that the first term on the right is the
same as (1-c)Gm. If we now assert that the bridged configuration propagates steadily, with
simultaneous matrix fracture and "last" fiber failure, we can set a(L) equal to cS, where S is the

* fiber strength. Now define the modified toughening ratio

K/Km

I c)AE/Em (19)

and use the formulas (16) for V in (18). Then we get

'i f

-"°f
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1F (,S 2]~1/2 cS 1(0l.)2
A _+ 2-!- for -5 -1

F (cS O 6 1/2cS i o~2

",L= I+T7 +2 Y.ooJ for (20b)

and this gives the curves in Fig. 8, showing A vs. cS/Ol for 01/0 = 0,1,2. An estimate for the
orthotropy factor A in the definition (19) of the modified toughening ratio A is given in Appendix

A.
These results may be rewritten to show A as a function of (cS/OYcr) in the form

I+ 2-(- L for -<
L"cr (TO Jcr 3 (21a)

3 Ocr1

(~cr CFO 1(l6 ~c ___=1+2 (+.'3 2.oo for a /O-.. FO cr 3(oYc o0)

S ICoo) (21b)

wherein (Ocr/O0), given in Fig. 3, in turn depends on 0 l/c0. Thus, the toughening has been

related directly to the ratio of the fiber strength to the theoretical stress for steady-state matrix
cracking. Curves showing A vs. cS/ocr for (ol/o0)3 = 0, 1, 2, 3, and oo are given in Fig. 9.
Recall that in the case of steady-state matrix cracking, the post-cracking strength Omax of the

composite is approximately equal to cS, assuming CS>Ocr. Accordingly, the abscissa in Fig. 9
may be interpreted as Omax/Ocr for CS/Ocr >1,

In the limiting case 0/00 -o , Ocr =O0, and the modified toughening ratio is simply

:-,1/2
"4" ~A= 1+ c /

GOES°0 (22)

* (For all finite 01/0 > 31/3, we still have acr = o, but then (22) holds only for cS/o0 <(oI/oo)3/3;
for larger values of cS/o0 frictional sliding will occur before fracture, even if it is absent during
steady matrix cracking.)

For Ol/OO -- 0, in which case 0 cr 01I, we have

?...

,0 " ,, / # d . , " ..a , " ,' ,' d ,% . ,' ,' . ,' ,, " , " .. , - . , . . . . . , , , , ,
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3 1/2

"L0 (23)

Fig. 8 shows that this approximation remains quite accurate for moderately high values of 0I! 0.

Note that Figs. 3 and 9 show that for decreasing frictional resistance r, and hence lower 01,

the steady-state matrix-cracking stress Ocr goes down, but the fracture toughness increases. The
curves in Fig. 9 would appear to imply an inherent limitation on the amount of toughening that
could reasonably be expected from a well-designed composite. Fracture toughness is an increasing
function of the ratio Omax/Ocr associated with matrix cracking and failure in uniaxial tension. Since

it is unlikely that values much larger than 2 for this ratio would be considered desirable,
toughening ratios around 4 may be the most one might seek.

TOUGHENING VS. BRIDGE LENGTH; RESISTANCE CURVES

To calculate the size of the bridged zone when fracture occurs we have to set up and solve
0

an integral equation for the stress in the intact fibers along the crack faces. For this purpose we
contemplate the spring model of Fig. 7a, and note that the crack opening displacement v(x) is given
by

4(1VLm)K 4(1- x+x ,

v(x)- ITT o(x)lo1 - dx'
v•x) A nAE 0,Ixx'= (24)

where the first term represents the displacement due to the far-field loading, and the second term is

the crack-closing effect of the spring stresses. The orthotropy factor A, the same one that appears
* in the J-integral (18), correctly modifies standard formulas for crack-face displacement in isotropic

materials (e.g. TADA et al., 1985). Equating the displacements in the bridged zone to those given

by the constitutive relations (17) found for the springs provides the integral equation
4((1 ~m -v. K +,x L

-- 47 o(x)loI xdx'
Nrn E AE j0 , , Jx

2 2F(l-c)(1-Vm)Km 3 x(x) 1()1
O(x) for :f.-.:-- 0~c~Em"0- ,0]

.' -'( 1- c )( 1- V m )K m 3 o '( x 2 W( x)
-''-- for--'E m  2 3 6 4g a0 3" .70

0i 00 (25)

-%

. - %



* 9

It is shown in Appendix B how this integral equation, suitably non-dimensionalized, was solved
simultaneously with the J-integral relation (18) to provide results for the modified toughening ratio
A as a function of the non-dimensional bridge length

4 Em (,Ocr, 2
a c 7AE(-c) Km)L (26)

Fig. 10 shows curves thereby calculated for A vs. a, for (cl/0)3 = 0, 2, 00. Remarkably, the

introduction of the theoretical steady-state matrix-cracking stress Occr into the definition (26) for the
.J.

non-dimensional bridge length has made the results come out nearly the same over the full range of

composite parameters.
With A given by Eq. (21) (or Fig. 9), these results provide the bridge length L

corresponding to propagation of the cracked configuration of Fig. 1, with simultaneous matrix
fracture and fiber failure at the end of the bridged zone. However, the curves of Fig. 10 have
another interpretation as resistance curves , in the following sense. Suppose a pre-existent,
unbridged crack in the composite, cutting through both fibers and matrix, is subjected to a
gradually increasing far-field K, and re-define A in Fig. 10 in terms of this current value of K. As

K increases, the crack will advance into the matrix material, and crack-bridging fibers will remain
intact as long as A remains below its critical value for final fracture of the composite. If we now

redefine L as the amount of matrix crack growth that occurs before overall composite fracture, the
relation between the current values of K and L is given by the curves of Fig. 10.

It is noteworthy that reduction of the frictional resistance T , and hence Crcr, will result in

increased matrix cracking and bridge lengths before and at final fracture.

CONCLUDING REMARKS

The fracture toughness of brittle materials reinforced by aligned brittle fibers has been
related simply to parameters associated with the steady-state matrix cracking of such materials. In

each of these processes the fiber-matrix interface shear resistance plays an important role, with
opposite effects: decreasing shear strength increases the toughness but lowers the matrix cracking
resistance. This is consistent with the fact that low interface friction may result in large amounts of

0
matrix cracking associated with the fracture resistance curves of the composite. The effects of
various other physical and geometrical parameters may be assessed with the help of the formulas

and curves that have been presented.

0

0%
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APPENDIX A

ORTHOTROPIC FACTOR A

Consider an orthotropic material, isotropic in planes normal to the xl-axis. The energy

release rate GI associated with a mode I crack in the x2-x3 plane is related to the stress intensity

factor KI by (TADA et al 1985)

G,= IC K (A1)

where C is defined in terms of compliances Aij by

:F---11/2
CAIIA 22  A22  2A 12 +A66A2"":"'e1=1 (A 2)
V2 A 1  2 All

The compliances may be expressed in terms of conventional elastic constants E, E, G, v and 9

defined by

-" , El =I/t , F'2 =- G/E for 02=03=0

Eg2 = (Y2/] , 3 = --V (72/E for (] =0(3=0

and y12 
= a1 '2/G-

For plane-strain cracks
1 -v 1 21

All = (1-v 2E/E), A12 = - (1 +9), A22 = - (1 _,2), A66 = (A3)E E E6

In th ,- J-integral expression (18) C is represented by (1-v2)/AEm and therefore

2
IVmAM= (A4)

CErn

For aligned fibers the ,Aastic constants E, E, G, v and 9 may be estimated on the basis of the self-

consistent model (HILL, 1965) in terms of Em, Ef, Vm, vf and c. For vf Vm = 1/4, the

consequent dependence of A on c is plotted for various values of Ef/Em > 1 in Figure 11.

0%
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APPENDIX B

INTEGRAL EQUATION SOLUTION

The substitutions
A- K/Kmg 1 0-'-":' i =l1a)

(Ic)AE/Em ' A< 0 cr

4 Em (ct i.r2 4 Em (Cr ,(b
7UAE(1-cd~7m x AE(1-C) Y-m-

into the integral equation (25) give

is - g(t) log S dt =t g(s), (B2a)

3 3N2A

= NA'72 g2(s) + otherwise (B2b)
642A

where

r = OlIo, pt = O .

Making the same substitutions (B 1) into (18) gives

A2  1 = 2 22 g(t) _< (B3a)

3.6 3
- 4,f-2 - A3g3(cz) + - g(a) _ r (B3b)"r> -7 3 42AI~t

* An alternative expression for A that can be shown to be consistent with (18) and the integral

*i equation (25) follows from the relation (TADA et al, 1985)

L-. LF o(x) d

, ,Km = K f ' 2 dx

namely,

A = 1 -0"s ds (34)

00F
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The solution of the integral equation (B2) follows the set-up developed in BUDIANSKY,

AMAZIGO, and EVANS (198$). Differentiate the equation with respect to s to get

1 g - (t) dt g(s), s _< SO  (B5a)

3'21A3 g(s) g'(s), s>s o  (B5b)

r

where so satisfies
a- . r3

r
g(so) = (B6)

3J2Ap"

To satisfy the original equation (B2) we have to enforce it at one point in addition to satisfying

* (B5) for s in (0,x). Enforcing the integral equation at s = at gives

9I gtlg dt- 3- IAN12g2(X) + 113(B7)
j 0 JO" 2 kr -6,1A

We now let

g(S) -H(s) (B8)

in (B5) to obtain

0,s3/2 s s3/2J f dt = 21- [2sH'(s) - H(s)], s SO (B9a)

2-t-s

•~ 53/  s3

-. 3"IA H(s) [2sH'(s) - H(s)], s > SO. (B9b)

r

* It is convenient to write

H(s) C(s/a) + f(s) (B10)

* where C = \-og(a), and f(0) = f(cc) = 0. Then

0NO
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r a

s 0 ( Cos 0) (B12)

-'- and expand f in the Fourier series

N

f(t) dt 7 an cos (nO).

We now substitute the above into (B1 1), multiply the resulting equation by sin(mB) and integrate

over [0,a] to get
N N

Bm(0 0) C + 32 Dm(0 0 ) C2 + Emn(0o) an + 34 C nFm(o) a1
'.-"n=l n l

'" + 3-,,A' " X Gmnj(0o) a 3  Am, m=l ....N (B 14)
=n= j=l

where

Bm(00) = a (Am + Qm) + "2 Hm(O),

.0.. Emn(0 0) = n Kmn + 2.t 2 J am Lmn(0o) - i12 'a Umn(OO),

Gmnj(0) n[ Sn+jm(0O) + sign(j-n) Sdnj,m(0o)] - Tnjm(80 ), n

. 2S 2n,m(0 0) - Tnnm(Oo), n=j
0

.0.d
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Am = H(-1) m' l  + 1 ,

-"4mi- 1 4m2- 9

11 5 1 1
D1 =T + cos 0o- cos 20 o +Tcos 300,

103 1 3 1 1
D2= 192 4cos0o+ - cos 200 - cos 300 + I cos 400,

M+1 -3 1 m 1 m 1I Fcos (m+a)0o cos (m-1)0o
A'. Dm=(-1) l ++ Im2-1+

T- [ + 2 m2 -1 Tm~ L m +1 rn-I

S.- 3 cos (m+2) 00 cos (m-2)0o1
+T' cosmOo + m+2 + m+_ -[ m > 2

r1
¢ (Vnm + sign(m-n) Vlnml for m n

42. FV 22+

V2n, 
for m = n

.3 sin (m+1/2)0o sin (m-1/2)001 + sin (m+3/2)0o sin (m-3/2)0o1
(n""3/ m - 3+/1/2)- m 2  + -+ m+ 2+ 3/2m-1

:w = + + ++Km 8 (n+1/2)2_m (n-1/2)_m2 (n+3/2)2_m (n-3/2)2_m

1
Skj (Rk-j - Rk+j

1 (cos (n+j-m)0o+ cos (j+m-n)0o  cos (m+n-j)0o cos (n+j+m)0o
'njm 4 n+j- m j+m-n m+n-j n+j+m

0 2njm(-1)n+j+m
+ 4 j4 4 2 2m2+2n2 for n j+m or j n+m or m j+n

n 4+j + m 4-2(nj212+ji2n 2+mn)2

cos (2jOo) + cos (2nO°) cos (mO o) ( lI)

8 j n 8j n m) jn

and similar expressions for n = j + m and j = n + m obtained by cyclic
'S-. permutation of j, n and m.

% L
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. 1 1 cos (m-n+1/2)00  cos (m-n-1/2)00
U (m+n)2_1/4 (m-n) 2_1/4 m-n + 1/2 m -n - 1/2

cos (m+n+1/2)00  cos (m+n-1/2)00,..,. m + n + 1/2 m + n - 1/2 '

and

Lmn sin (0/2) tan (0/2) cos (nO) sin (mO) dO,

ft

QM = sin 5(0/2) log 1 - cos ) sin (mO) dO,

- 1- Cos 0 [cos (nO) - (-1)n] dO,

sin 0
;:S-: (I Cos 0)2

0.. Vk =s 0 sin (kO) dO,

were evaluated numerically in spite of the fact that the last two integrals can be evaluated

analytically in terms of finite series. 00 satisfies the equation (B6) with so = (Wx/2)(1 - cos 00), that

is
N

- cos 0o) C + I an sin(nOO) sin (o/ 2 ) = 0. (B 15)
. n=1 3 / A lt

Substitution for g into (B7) using (B8), (B10), (B12) and (B13) gives

P N1 ".-)3 -3/ CW3 1/
-(1+2log2) C + 3A 3-C2 +IPXa. = I a- (B[16, '.3 -2 r 642"An

n=1
.'-''-E 1 + sin (0/2)

where Pn = cos (0/2) lo 1+si (0/2) sin (nO) dO
.0(

Equation (B3) relating C and A is

221 cc (AC) AC_ r4"/3,'r2 (B17a)

4 - 3 4Q (/ r)3 a-3/2 (AC)3 + r6/27, AC > r34'-/34'2g (B 17b)

'. -..



while the alternative 
formula 

(34) becomes

A = 1- C - R an (B 18)

For prescribed values of r = aI/co and ax the N+3 nonlinear equations (B14), (B15), (B 16) and

(B 17) were solved by the Newton-Raphson iteration method for the N+3 unknowns C, an,

n=1,..,N, A and 00. The formula (B18) provided a check on the accuracy of the numerical

scheme. For values of a presented in Fig. 10 the error in the value of A was less than 1%. For

cF/a -- eo, ---> 1 and equation (32) becomes

-'- g(t) log dt = g(s).

This is equivalent to the linear spring problem analyzed fully by BUDIANSKY, AMAZIGO, and

EvANS (1989) and ROSE (1987).
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* Fig. 1 Composite fracture; crack-bridging by aligned fibers in vicinity of crack tip.

• '

* Fig. 2 Steady-sate matrix cracking; intact fibers.
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Fig. 3 Theoretical results for matrix cracking stress ocr.
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Omax = CS

oycr

Fig. 4 Idealized stress-strain curve for aligned-fiber composite; matrix cracking at cy - c,

failure at a - cm,,cS.

:c r oYcr

8 =2v

(a)(b

Fig. 5 (a) Spring model, steady matrix cracking.

(b) J-integral path.
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Fig. 8 Modified toughening ratio A = ; abscissa Oma/O1 for cS > acr.• ",. (1 "")A E/Em
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